LINEAR PRESERVERS OF SPANNING COLUMN RANK OF MATRIX SUMS OVER SEMIRINGS
نویسندگان
چکیده
منابع مشابه
linear preservers of two-sided matrix majorization
for vectors x, y ∈ rn, it is said that x is left matrix majorizedby y if for some row stochastic matrix r; x = ry. the relationx ∼` y, is defined as follows: x ∼` y if and only if x is leftmatrix majorized by y and y is left matrix majorized by x. alinear operator t : rp → rn is said to be a linear preserver ofa given relation ≺ if x ≺ y on rp implies that t x ≺ ty onrn. the linear preservers o...
متن کاملLinear Preservers of Majorization
For vectors $X, Yin mathbb{R}^{n}$, we say $X$ is left matrix majorized by $Y$ and write $X prec_{ell} Y$ if for some row stochastic matrix $R, ~X=RY.$ Also, we write $Xsim_{ell}Y,$ when $Xprec_{ell}Yprec_{ell}X.$ A linear operator $Tcolon mathbb{R}^{p}to mathbb{R}^{n}$ is said to be a linear preserver of a given relation $prec$ if $Xprec Y$ on $mathbb{R}^{p}$ implies that $TXprec TY$ on $mathb...
متن کاملLinear Orthogonality Preservers of Hilbert C∗-modules over C∗-algebras with Real Rank Zero
Let A be a C∗-algebra. Let E and F be Hilbert A-modules with E being full. Suppose that θ : E → F is a linear map preserving orthogonality, i.e., 〈θ(x), θ(y)〉 = 0 whenever 〈x, y〉 = 0. We show in this article that if, in addition, A has real rank zero, and θ is an A-module map (not assumed to be bounded), then there exists a central positive multiplier u ∈M(A) such that 〈θ(x), θ(y)〉 = u〈x, y〉 (x...
متن کاملLinear preservers of g-row and g-column majorization on M_{n,m}
Let A and B be n × m matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on Mn,m, and the possible structure of their linear preservers will be found. Also all linear operators T : Mn,m ---> Mn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2008
ISSN: 0304-9914
DOI: 10.4134/jkms.2008.45.2.301